第5题: 最小倍数
Problem 5: Smallest Multiple
目录
题目
最小倍数
$2520$ 是可以被 $1$ 至 $10$ 中的每一个数整除的最小数。
求能被 $1$ 至 $20$ 中的每一个数整除的最小正整数。
Smallest Multiple
$2520$ is the smallest number that can be divided by each of the numbers from $1$ to $10$ without any remainder.
What is the smallest positive number that is evenly divisible by all of the numbers from $1$ to $20$?
解题方法
显然,答案为 $1$ 至 $20$ 中的每一个数进行素因数分解后,取最大的次方并相乘。
对 $1$ 至 $20$ 分解素因数见下表:
| - | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 |
|---|---|---|---|---|---|---|---|---|
| 1 | ||||||||
| 2 | 1 | |||||||
| 3 | 1 | |||||||
| 4 | 2 | |||||||
| 5 | 1 | |||||||
| 6 | 1 | 1 | ||||||
| 7 | 1 | |||||||
| 8 | 3 | |||||||
| 9 | 2 | |||||||
| 10 | 1 | 1 | ||||||
| 11 | 1 | |||||||
| 12 | 2 | 1 | ||||||
| 13 | 1 | |||||||
| 14 | 1 | 1 | ||||||
| 15 | 1 | 1 | ||||||
| 16 | 4 | |||||||
| 17 | 1 | |||||||
| 18 | 1 | 2 | ||||||
| 19 | 1 | |||||||
| 20 | 2 | 1 | ||||||
| 最高次方 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
因此答案为 $ 2^{4} * 3^{2} * 7 * 11 * 13 * 17 * 19$
参考代码
| |